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THE COMPUTATIONAL COMPLEXITY OF
THE MINIMUM DEGREE ALGORITHM *

P.HEGGERNESt, S.C.EISENSTAT$,G.KUMFERT§,ANDA.POTHEN¶

Abstract. TheMinimumDegreealgorithm,oneof theclassicalalgorithmsof sparsematrixcomputa-
tions,iswidelyusedto ordergraphsto reducetheworkandstorageneededto solvesparsesystemsoflinear
equations.Therehasbeenextensiveresearchinvolvingpracticalimplementationsof thisalgorithmover
thepasttwodecades.However,little hasbeendoneto establishtheoreticalboundsonthecomputational
complexityoftheseimplementations.WestudytheMinimumDegreealgorithm,andprovetimecomplexity
boundsfor its widelyusedvariants.

Key words, sparsematrixordering,minimumdegreealgorithm,graphalgorithms,computational
complexity

Subject classification. Computer Science

1. Introduction and motivation. One of the most famous and well studied problems of graph theory

is the problem of adding as few edges as possible to a given graph so that the resulting graph is chordal.

This is called the minimum fill problem, and it has applications in many areas within computer science,

especially in sparse matrix computations [6, 12, 13, 14, 15]. As the minimum fill problem is NP-hard [17],

several heuristics have been proposed to find low fill. One of the most famous and widely used of these

heuristics is the Minimum Degree (MD) algorithm [7, 11, 16].

One rigid requirement of a practical MD implementation is that its space complexity should be linear in

the size of the input graph. Several algorithmic variants of the MD algorithm have been developed since it

was first proposed in 1957, and these enhancements reduce the running time of the algorithm or reduce the

fill generated by the ordering. However, the theoretical time complexity of the practical MD algorithm has

never been established. Now that the increasing power of modern microprocessors enable us to order very

large graphs (with millions of vertices), the asymptotic bounds obtained from the theoretical analysis could

be met on some large worst-case examples. Our aim in this paper is to study the MD algorithm, explaining

the steps in its modern implementation, and to give a theoretical time bound on its running time. We will

also show with an example that the time bound presented is tight on general graphs.

This paper is organized as follows: We provide the necessary graph theoretical background in Section

2. In Section 3, the various MD algorithms are described and their time complexity is analyzed, along with

examples on which the bounds are attained. We conclude in Section 4.
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2. Graphelimination and fill A graphG = (V,E) consists of a set V of vertices (or nodes), and a

set E C_ V x V of edges. Vertices u and v are adjacent, or neighbors, if (u, v) is an edge in E. An ordering

a : V ++ {1,2,...,n} of G is a permutation, or a numbering, of its vertices; here n - IVI . The graph G

ordered by a is denoted by G_, however we will omit the subscript when the ordering is clear from the

context. If the vertices of G are ordered already, we will write V = {1, 2, ..., n}. The set of vertices adjacent

to a vertex i in G_ is denoted by adja(i). The degree of i in G is da(i) = ladja(i)l • For a set of vertices

X C V, adj(X) = Uicxadj(i) - X, and the external degree of X is ladj(X)l. A set K of vertices is an

independent set if no pair of vertices in K is adjacent. A set C of vertices is a clique if every pair of vertices

in C is adjacent.

A chord in a cycle is an edge that connects two non-consecutive vertices of the cycle. A graph is chordal

if every cycle with more than three edges contains a chord.

2.1. Elimination graph model. A graph model of the Cholesky factorization of a sparse matrix A is

given in the algorithm [12] shown in Figure 2.1. This algorithm is often referred to as the elimination game.

Go = G;

fori-- 1ton do

Add edges as necessary to make all neighbors of vertex i in Gi-1 pairwise adjacent;

Remove the vertex i and all edges incident to i;

Denote the resulting graph by Gi;

F_G. 2.1. The elimination game.

The input to the elimination game is G = G(A). Before elimination, we assume an ordering on the

vertices of G. At each step i, the neighborhood of vertex i is turned into a clique, and i is deleted from the

graph. This is referred to as eliminating vertex i, and the graphs Gi -- ({i+1, ..., n}, Ei) are called elimination

graphs. (The set Ei contains the edges in the ith elimination graph Gi.) The filled graph G + = (V, E +) is

obtained by adding to G all the edges added by the algorithm. Thus E + = Un-IE and the set of fill edgesi=0 i,

isF=E +\E. We will letm-lEI andre +-I S+I.

Fulkerson and Gross [4] showed that the filled graphs resulting from this algorithm are exactly the class

of chordal graphs. Different filled graphs result from processing the vertices of G in different orders. Thus in

order to find a low fill, it is important to find a good order on the vertices of the given graph before running

elimination game. Finding an ordering that results in the minimum fill is an NP-hard problem [17].

2.2. The minimum degree idea. The minimum degree idea aims to minimize fill locally at each step

i of the elimination game by choosing to eliminate a vertex with the minimum degree in the elimination

graph Gi_ 1. The algorithm starts by assuming that there is no numbering on the vertices, and chooses a

vertex in G with the minimum degree to be numbered and eliminated first. At each following step i, a

vertex of minimum degree in Gi_ 1 is chosen as vertex i and eliminated, and ties are broken arbitrarily. This

is clearly a greedy algorithm, with no guarantees on the quality of the resulting ordering. However, the

orderings produced by minimum degree are surprisingly good with respect to fill in practice.

The time complexity of this approach is definitely O(nm+), since all degrees in Gi_ 1 can be computed

in O(m +) time at each step i. However, this requires O(n + m +) space, violating the O(n + m) space

requirement.

2.3. Supernodes. In a graph G, two adjacent vertices u and v are said to be indistinguishable if

adj(u) U {u} = adj(v) U {v}. Clearly, if u and v are indistinguishable then they have the same degree, and



0 _ reach (1) {2, 6}

1 _ reach (2) {4, 6}

2 _ reach (3) {5, 6}

reach (4,5,6) {}

F_G. 2.2. The elimination process illustrated with elimination graphs (column on the left) and quotient graphs (column on

the right).

if one of them, say u, is eliminated, no new fill edges joining v to any other neighbor of u are created. The

degree of v will decrease by one (to reflect the elimination of u) in the remaining graph. Thus if one of

them is among the vertices with minimum degree, then they both are, and after the elimination of one,

the other will continue to be among the vertices with minimum degree in the next elimination graph. For

this reason, both vertices could be eliminated at the same step, and numbered consecutively in a minimum

degree ordering.

It is shown in [6] that two vertices that become indistinguishable at one step of the elimination game

remain indistinguishable for the rest of the algorithm. In addition, they can be eliminated together whenever

one of them is chosen for elimination [7]. Thus for purposes of the MD algorithm, the two vertices can be

merged into a supernode and treated as one vertex for the remainder of the algorithm. This is called mass

elimination in MD implementations.

At the beginning of the algorithm, all vertices are supernodes of size one. Then during the algorithm,

indistinguishable supernodes are merged together as they are detected. It is common to use the external

degrees of supernodes [10]: the external degree of a supernode is the number of vertices adjacent to it that

belong to other supernodes. The weight of a supernode is the number of vertices that are absorbed in it.

2.4. Quotient graph model. In the elimination graph model, the graph shrinks by one vertex at each

step, but it might grow by many edges, and thus require significantly more space than the original graph.

Quotient graphs [5] enable the ordering algorithm to use space bounded by the size of the original graph

(O(n + m) space), and are used in all modern implementations of MD.

The quotient graph G consists of two types of nodes: snodes and enodes. Initially, G0 is identical to



theeliminationgraphGo and consists of only snodes (supernodes). When an snode is eliminated, it is

not removed from the quotient graph, but it becomes an anode (eliminated supernode). In Figure 2.2,

an example of the elimination is shown with both elimination graph and quotient graph representations.

The snodes are drawn as circles, and anodes are drawn as squares. The adjacency set of an snode in the

quotient graph is divided into its s-adjacency and its e-adjacency. The set of snodes adjacent to an snode r

is denoted by sadj(r), and the set of anodes adjacent to r is denoted by eadj(r). Thus in the quotient graph,

adj(r) = sadj(r) U eadj(r).

The reachable set of an snode r, reach(r), is the union of its s-adjacency and the snodes that it can reach

through paths consisting of only anodes, and thus it corresponds to the neighbors in the elimination graph:

reachG_(r) = adja_(r). Consequently, to determine the next vertex to eliminate in MD, the sizes of the

reachable sets of all candidate snodes must be computed. In order to make this more efficient, neighboring

anodes are merged together so that a path consisting of only anodes is now shortened to one anode. Hence,

reach(r) = sadj(r) U (Ueceadj(r) sadj (e) ).

When an snode r is eliminated, r and all the anodes that are neighbors of r are merged into one anode.

If r does not have any neighboring anodes then it becomes an anode by itself. The elimination of r could

cause changes in the adjacency sets of other snodes as well. If two snodes become indistinguishable, they

are merged together. If two adjacent snodes r and s have an anode e as a neighbor, then the edge joining r

and s can be deleted from the quotient graph since it is redundant. (The snodes r and s are adjacent in the

elimination graph since they are reachable from each other through e in the quotient graph.) This process is

illustrated in Figure 2.2. The numbers in the middle indicate step k of the elimination process. The graphs

on the left side represent the elimination graphs Gk, and the ones on the right side represent the quotient

graphs Gk for each k.

3. Minimum Degree algorithms in detail. In the previous section, we introduced the idea of

the minimum degree algorithm by considering the elimination of a single vertex in an elimination graph.

However, practical implementations use the quotient graph data structure, and eliminate supernodes. In this

section we present detailed algorithmic descriptions of several MD algorithms; all these are based modern

implementations based on quotient graphs and use the tools described in Section 2.4. Since we use the

external degree of a supernode, the computed ordering might not in some cases correspond to a strict

minimum degree ordering. However, the use of external degree tends to give better results than exact

degree in practice [10]. Kumfert and Pothen [3, 8, 9] provide an algorithmic laboratory for object-oriented

implementations of several variants of minimum degree algorithms.

3.1. Original Minimum Degree. The original MD algorithm, enhanced by the techniques mentioned

in Section 2.4, is presented in Figure 3.1. We only discuss the details of the most time consuming steps.

Asymptotically, the costliest operation in MD is the degree update. After a vertex has been eliminated,

the graph changes, and the degrees of the remaining nodes have to be recomputed in order to choose a

vertex of minimum degree. Thinking in elimination graph terms, it is easy to see that only the neighbors

of the eliminated vertex need to have their degrees recomputed. In the quotient graph, this corresponds to

reachGk_l (Uk), where Uk is the supernode eliminated at step k. Thus we need to compute the reachable

set of the snode to be eliminated. After the elimination, the snodes in the reachable set examine their own

reachable sets to find their new degrees. These two steps correspond to the major steps in the MD algorithm

described in Fig. 3.1.

We now study the time complexity of the MD algorithm given in Figure 3.1. Let np denote the total

number of supernodes eliminated. At each step k, when snode Uk is to be eliminated in Gk-1, the following



G0 = G;

Compute initial supernodes and their weights;

Compute initial degrees;

mark = O; k = O; t = O;

while there are snodes in Gk do

k=k+l;

choose uk to be an snode of minimum degree;

replace snode uk with enode uk;

{ 1. Find the reachable set of uk }

t = t+ 1; mark(uk) = oc; reach = {};

{ la. Include snodes adjacent to uk in reachable set }

for each snode r C sadj(uk) do

mark(r) = t; reach = reach U r;

{lb. Process enodes adjacent to uk and include snodes adjacent to them in the reachable set }

for each enode e C eadj(uk) with mark(e) < t do

mark(e) = t; Merge uk and e;

for each snode r C sadj(e) with mark(r) < t do

mark(r) = t; reach = reach U r;

Detect new supernodes;

Form updated quotient graph Gk;

{2. Update the degrees of snodes in the reachable set of uk }

for each snode r C reach do

t = t A- 1; mark(r) = t; degree(r) = O;

{2a. Examine snodes adjacent to r }

for each snode s C sadj(r) do

mark(s) = t; degree(r) = degree(r) + weight(s);

{2b. Examine enodes adjacent to r and snodes adjacent to the enodes }

for each enode e C eadj(r) with mark(e) < t do

mark(e) = t;

for each snode s C sadj(e) with mark(s) < t do

mark(s) = t;

degree(r) = degree(r) + weight(s);

np = k;

FIG. 3.1. The MD algorithm.

steps are performed:

1. The enodes adjacent to Uk are merged into Uk.

2. The snodes adjacent to Uk and the snodes adjacent to the enodes merged with Uk are included in

the reachable set. Note that each snode appears once in the reachable set since we mark the snodes

when they are reached the first time. The computed reachable set is equal to reachGk_ 1 (Uk).

3. For each snode r in the reachable set, we count each of its neighboring snodes s and each of its

neighboring enodes e in Gk-1 exactly once.

4. Finally, for each enode e that we reach in this fashion, the s-adjacency of e is also examined. This is

done exactly once for each enode e in the e-adjacency of each snode r in the reachable set. However,

in the worst case, the same enode e can belong to the e-adjacency of every snode r in the reachable

set. Thus the adjacency of e might have to be examined once for every snode in the reachable set.

This is illustrated in Figure 3.2.



a)

FIG. 3.2. The local graphs searched by (a)

b)

the MD and MMD algorithms, and (b) the AMD algorithm. The node uk is the

current snode being eliminated; it becomes an enode in this step. The square nodes denote enodes, the hatched circles denote

snodes in the reachable set of uk, and the open circles denote additional snodes examined to update the degrees of the snodes

in the reachable set. The thick lines represent edges that might be traversed several times at each step.

As a consequence, the number of edges examined during a run of the algorithm is expressed as follows:

eCeadj(uk ) rCreach(uk ) eCeadj(r)

All sets appearing in this expression should have subscript Gk-1 since we are considering adjacencies in this

quotient graph.

THEOREM 3.1. The running time of MD is O(n2m).

Proof: Resolving the above sum term by term, the adjacencies of all the nodes in the graph is O(m). The

sum of the s-adjacencies of the enodes examined at a step is also O(m). The reach set is bounded by O(n);

and the number of edges examined when considering the s-adjacencies of the reach sets is O(m). Thus the

running time of MD is O(n(m + (nm))) = O(n2m). []

Depending on the graph and the snodes, np might be quite smaller than n, making the given theoretical

bound too pessimistic. The graph needs also to be quite dense to meet the given bound, and as we get more

and more cliques new supernodes will probably be formed, decreasing np. However, we will show at the end

of this section that the given bound is tight by showing a simple graph that meets the given bound.

3.2. Multiple Minimum Degree. The Multiple Minimum Degree (MMD) algorithm, an improve-

ment over the MD algorithm, was proposed by Liu [10]. Consider an independent set K of vertices. The

elimination of a vertex in K cannot change the degree of any other vertex in this set, since no two vertices in

K are adjacent. If we include only vertices of minimum degree in K, then clearly after the elimination of any

vertex in K, the other vertices of K will still be among the minimum degree vertices at the next elimination

step. The idea of the MMD algorithm is to eliminate a maximal independent set of minimum degree vertices

before doing a degree update. At each step i of the algorithm, an independent set Ki of minimum degree

vertices are found. These are eliminated and vertices adjacent to them are marked as vertices whose degrees

need to be updated. The degrees of all the marked vertices are updated only after all the vertices in Ki are

eliminated. In the quotient graph model, the set of snodes whose degrees need to be updated is the union

of the reachability sets of the snodes in Ki. If these reachability sets have snodes in common, fewer degree

updates would be needed than in the MD algorithm.

When the MMD idea is implemented with supernodes instead of single vertices, the degrees might

become slightly inaccurate. Since we use external degrees for supernodes, eliminating a large supernode in

the independent set K might actually cause an snode outside of K to acquire an external degree lower than



GO = G;

Compute initial supernodes and their weights;

Compute initial degrees;

mark = O; i = O; t = O;

while there are snodes in Gi do

i=i+1;

Choose Ki to be an independent set of snodes of minimum degree;

t = t + 1; update = {};

{1. Eliminate snodes in Ki;}

{ update is the union of the reachability sets of these snodes. }

for each snode k C K/ do

mark(k) = oc;

for each snode r C sadj(k) do

mark(r) = t; update = update U r;

for each enode e C eadj(k) with mark(e) < t do

mark(e) = t;

for each snode r C sadj(e) with mark(r) < t do

mark(r) = t; update = update U r;

{2. Update quotient graph after eliminating snodes in Ki.}

for each snode k C Ki do

Replace snode k with enode k;

Merge k and eadj(k) to one enode;

Detect new supernodes;

Form Gi ;

{3. Compute degrees of each snode in the update set.}

for each snode r C update do

t = t + 1; mark(r) = t; degree(r) = 0;

for each snode s C sadj(r) do

mark(s) = t; degree(r) = degree(r) + weight(s);

for each enode e C eadj(r) with mark(e) < t do

mark(e) = t;

for each snode s C sadj(e) with mark(s) < t do

mark(s) = t; degree(r) = degree(r) + weight(s);

n h = i;

F_G. 3.3. The MMD algorithm.

any of the other snodes in K. In this case, eliminating all the snodes of K before other snodes of possibly

lower degree will generate a slightly perturbed minimum degree ordering. However, in practice the quality

of the orderings from the MMD algorithm is usually slightly better than orderings from the MD algorithm

with respect to fill.

If all the independent sets are of size one, then the work of MMD is equal to that of MD. The difference

is that degree update is done less frequently when the independent sets are not just singletons. Let Ki be

the set of independent supernodes that are eliminated at step i, and let nh be the total number of steps.

For each snode k E Ki, we will do the same work as for each Uk in the MD algorithm to find reach(Uk).

However, the degree update is performed on all the snodes of reach(Ki) at the same step i. Adding up the

operations of the algorithm in a straight forward manner, we get:

eCeadj(Ki) rCreach(Ki) eE(eadj(r)

THEOREM 3.2. The running time of MMD is O(n2m).



Proof." The analysis is similar to the MD algorithm. At most O(n) snodes can be in the total reachable set,

and thus the time complexity of MMD is also O(n(rn + (nrn))) = O(n2rn). []

For the MMD algorithm, the gap between nh and n is even larger. Thus we can expect better performance

of MMD than the given bound on average. However, the example at the end of this section shows that the

given bound is tight.

3.3. Approximate Minimum Degree. Like MD, and unlike MMD, the Approximate Minimum De-

gree (AMD) algorithm is a single elimination algorithm; hence the degree and graph updates are performed

after a single supernode is eliminated. The idea of the AMD algorithm is to compute an upper bound

on the degrees inexpensively instead of computing the exact degrees, and to use this upper bound as an

approximation to the degree for choosing supernodes to eliminate.

Let us define the weight of an snode to be the number of nodes in the original graph Go that are members

of the supernode. We also define the weight of an enode e to be the sum of the weights of the snodes adjacent

to it in the current quotient graph, i.e., weight(e) = _sCsadj(¢) weight(s). Let r be an snode whose degree

is to be updated. The degree of r cannot be greater than the sum of the weights of all the snodes and the

enodes adjacent to it in the current quotient graph. AMD uses this upper bound as an approximation for

the degree of r. However, the s-adjacency sets of the enodes in eadj(r) might overlap, making the bound

too loose, and causing a large gap between the real degree and the approximated degree bound of r. This

gap can be reduced by computing a quantity diff(e) associated with each enode [1, 2] to remove some of the

overlap in the adjacency sets.

Let Uk denote the snode that is eliminated at step k. It is then merged with all of its e-neighbors, and

the weight of the new giant enode Uk in the quotient graph Gk becomes the sum of the weights of all the

snodes r E reachGk_ 1(Uk):

weight(Uk) = E weight(r).

rCreach_k_ 1 (uk)

Since each snode r in the reachability set above is a neighbor of enode Uk in Gk, the value weight(Uk) will be

added to the approximate degree of r. Therefore, for all the other enodes e E eadj(r) where e ¢ Uk, to prevent

double counting, we should include in weight(e) only the contribution from the weights of the snodes disjoint

from those in the reachability set; i.e, we should sum only the weights of snodes s E sadj(e) \ reachGk_ _ (Uk)

instead of summing the weights of all snodes in sadj (e).

We define a diff function for enodes e E eadj(reachGk_ _ (Uk)) in the quotient graph Gk as

weight(e) if e = Uk,diff(e) = weight(e) - _rCr_a_h_k__(_k) weight(r) if e _ Uk.

The approximate degree of r E reach6k_ _ (Uk) can be then computed from:

adegree(r) = weight(Uk) + E weight(s) + E diff(e).

The AMD algorithm is described in Figure 3.4. The local graph that is searched is shown in Fig. 3.2.

Note that now each edge in this local graph is examined at most twice, once from each of its endpoints.

Because of the increased difficulty of finding the set intersections, multiple elimination is usually not

implemented in AMD. Without the multiple elimination, the total number of steps in the AMD algorithm

is:



G0 = G;

Compute initial supernodes and their weights;

for each snode r C Go do

sdegree(r) = 0;

for each snode s C sadj(r) do

sdegree(r) = sdegree(r) + weight(s);

mark = O; k = O; t = O;

while there are snodes in Gk do

k=k+l;

{1. Eliminate an snode uk and compute its reachable set.}

choose uk to be an snode of minimum approximate degree;

kweight = weight(uk);

replace snode uk with enode uk;

t = t+ 1; mark(uk) = oc;

reach = {}; weight(uk) = 0;

{la. Include snodes adjacent to uk in the reachable set}

for each snode r C sadj(uk) do

mark(r) = t; reach = reach U r;

weight(uk) = weight(uk) + weight(r);

sdegree(r) = sdegree(r) - kweight;
{lb. Include snodes that are neighbors of enodes adjacent to uk in the reachable set }

for each enode e C eadj(uk) with mark(e) < t do

mark(e) = t;

for each snode r C sadj(e) with mark(r) < t do

mark(r) = t; reach = reach U r;

weight(uk) = weight(uk) + weight(r);

Let uk absorb e;

Detect new supernodes; Form Gk ; t = t + 1;

{2a. Compute diff(e) for enodes adjacent to snodes in the reachability set.}

for each snode r C reach do

for each enode e C eadj(r), e ¢ uk do

if mark(e) < t then

diff(e) = weight(e) - weight(r); mark(e) = t;

else

diff(e) = diff(e) - weight(r);

{2b. Compute approximate degrees for snodes in the reachability set.}

for each snode r C reach do

adegree(r) = sdegree(r) + weight(uk) - weight(r);

for each enode e C eadj(r), e _£ uk do

adegree(r) = adegree(r) + diff(e);

rip : k;

F_c. 3.4. The AMD algorithm.

o ladj(uk)l + _ Isadj(e)l + _ leadj(r)l •
= eCeadj(uk) rCreach(uk)

THEOREM 3.3. The running time of AMD is O(nm).

Proof." In the expression above, the sum of the second and third terms is O(m). Hence the complexity is

O(n(m + m)) = O(nm). []

For AMD, Amestoy, Davis, and Duff [1] have shown a tighter time complexity of O(m +) on bounded



degree graphs, when quotient graphs are employed to satisfy the O(n + m) space bound.

3.4. Examples that meet the bounds. Consider the following graph on 8k + 1 vertices (shown in

Figure 3.5 for k = 1): There are 4k "outer" vertices Xl,...,x4k, 4k "inner" vertices Yl,... ,Y4k, a "hub"

vertex z, an edge between each xi and each yj with li -Jl _ 2k, and an edge between each yj and z.

F_C. 3.5. An example on which MD requires O(n2m) time.

Clearly MD eliminates the 4k outer vertices first and, with the right tie-breaking strategy, does so

in the order Xl,...,x4a. At the time that each of the k outer vertices xa+l,...,x2a is eliminated, it is

distinguishable and adjacent to at least k distinguishable inner vertices (including Yl,..., Yk). Each of these

inner vertices is adjacent to at least k unmerged enodes (including Xl,..., xa), and each of these enodes is

adjacent to at least k distinguishable inner vertices (including Yl,...,Yk). Thus the total work to update

degrees while eliminating these outer vertices is _(k4). Consequently, MD requires O(n2m) time on this

example since n -- 8k + 1 and e -- 4k 2. By the same arguments, AMD requires O(k 3) -- O(nm) time on the

same example.

An example for MMD is slightly more complicated. Beginning with the graph above, add a clique with

4k vertices Cl,..., c4a, add edges between xi and Cl,..., ci-1 for each i, add edges between each yj and each

c_, and add edges between z and each c_. Then MMD first eliminates the outer vertices one at a time in the

same order as above, so the work is again _(k4), resulting in O(n2m) time.

4. Conclusions. We have given a thorough analysis of the MD algorithm together with its variants

MMD and AMD. Based on quotient graph implementations and O(n + m) space requirement, we have

established an O(n2m) time bound for MD and MMD, and an O(nm) bound for AMD. Note that these

bounds are for nearly dense graphs. Fortunately, these bounds are not often observed for problems that are

solved in practice. A further development of this work is to identify graph classes with provably better MD

time complexities.
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